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Abstract. The effect of dispersive transport in the single-species reaction-diffusion models of
coagulation (A+A→ A) and annihilation (A+A→ 0) is considered. This transport is modelled
through a fractal-time random walk, in which the stepping-times of the walker (a typical particle)
follows a renewal process characterized by a pausing time distribution proportional to a stable
law at long times,ψ(t) ∼ t−1−γ , with 0 < γ < 1 (the fractal dimension of the time). This
leads to a sublinear mean squared displacement for the particles:〈r2(t)〉 ∼ tγ . The decay of
the concentration of particles,A(t), is obtained for all space dimensionsd, and for the whole
course of the reactions. The obtained results are exact for short and long times, with the long
time asymptoticsA(t) ∼ t−γ /2 for d = 1, A(t) ∼ ln(t)t−γ /2 for d = 2 andA(t) ∼ t−γ for
d > 3. The effect of highly non-homogeneous space distributions of particles is also considered.
It is found that a fractal segregation of dimensionα (with 0< α < d) in the initial distribution
of particles in the space leads toA(t) ∼ t−γα/2 for d = 1, A(t) ∼ ln(t)t−γα/2 for d = 2 and
A(t) ∼ t−γ+γ (d−α)/2 for d > 3, d − 2 < α < d andA(t) ∼ cte > 0 for 0< α < d − 2. This
shows a subordination phenomenon in the combination of space- and time-fractal distributions.

1. Introduction

Despite the extensive literature that exists on the coagulation (A+A→ A) and annihilation
(A+A→ 0) reaction-diffusion models, many aspects of these reactions still deserve closer
scrutiny. One of these aspects is the effect which subdiffusive transport may have on the
evolution of the particle concentration,A(t). While most previous work has been concerned
with a pure diffusive behaviour, here we address the case of asublinear evolution of the
mean squared displacement of the particles:〈r2(t)〉 ∼ tγ characterized by an exponent
0< γ < 1.

The annihilation reaction under such particle motion was addressed for the first time
by Blumen, Klafter and Zumofen (BKZ), see [1] and references therein. They modelled
the reactions as a continuous-time random walk (CTRW) with waiting-time distributions
(WTD) displaying long-time tails

ψ(t) ∼ ct−1−γ . (1)

The WTDψ(t) is the probability density for the elapsed time between the consecutive steps
of a given particle. If 0< γ < 1, this distribution does not have integer moments (with the
exception of the normalization or zero-moment)

〈tm〉 =
∫ ∞

0
dt tmψ(t)→∞ for 0< γ < 1 andm = 1, 2, . . .. (2)
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In this caseψ(t) originates a time renewal process in which the mean number of events
(particle steps) grows as〈s(t)〉 ∼ tγ . If the variance of the single-step displacement,σ 2, is
finite, then the mean squared displacement is〈r2(t)〉 = σ 2〈s(t)〉. Therefore, for 0< γ < 1
subdiffusive transport occurs.

The expression ‘fractal-time’ (of dimensionγ ) was coined for this model of subdiffusion
[2, 3]. In fact, a renewal process with such a WTD suffers very sporadic behaviour; long
intervals may exist, followed by bursts of events. The most probable pauses between events
are short but occasionally very long pauses exist. Given a long pause, there is still a smaller
but finite probability that an even longer one will occur. The resulting pattern of events,
as pictured as a point process along the time axis, is a cluster structure and one would not
be able to measure a mean pausing time between points by examining this pattern. The
relation of power law (1) to a fractal set of event times can be viewed by constructing a
dilatationally symmetric WTD, by taking into account events occurring on all time scales.
For example, starting with the exponential distribution characteristic of a Poisson process
(however, any other process will lead to the same conclusion)

ψ(Poisson)(t) = λ exp(−λt) (3)

one constructs a new distribution in the following way:

ψ(t) = 1− a
a

∞∑
j=1

(ab)j exp(−bj t) (4)

where 0< b and 0< a < 1 in order to ensure normalization. This WTD satisfies

ψ(bt) = ψ(t)/(ab)− (1− a)b (5)

and thus at long timesψ(bt) ∼ ψ(t)/(ab), which has a solution of the form (1) when
γ = ln(a)/ ln(b).

Let us recall that (1) follows from the distribution of carrier release times from low-lying
traps to the conduction band [4]. This distribution is fundamental to the multiple trapping
formalism. For activated processes the rates depend exponentially on the energy, so that
an equidistant level spacingEj = j1 leads to rates proportional to exp(Ej/kT ) = bj ,
with b = exp(−1/kT ). Furthermore, the density of states in the energy tail is often itself
exponential in energy, exp(−Ej/kT ) (where one introduces an effective temperatureT0)
so that the density of states followsaj with a = exp(−1/kT0). Thus, in this example
γ = ln(a)/ ln(b) = T/T0 for T < T0 and one has dispersive transport belowT0.

In [1, 5] BKZ reported an Smoluchowski-type approximation for the particle population
decay in bimolecular reactions. This consists in approximatingA(t) ∼ 8(t) by the
relaxation function,8(t), of an alternative trapping problem. Here8(t) is the survival
probability of a particle in the presence of randomly distributedstatic traps. To obtain
8(t), the Rosenstock approximation was used as well as some criteria for approximating
the mean number of distinct sites visited by a particle under dispersive motion up to time
t , S(t). They found

8(t) ∼ 1/S(t) ∼
{
t−γ ds/2 for ds < 2, γ < 1

t−γ for ds > 2, γ < 1
(6)

whereds is the spectral dimension. Simulation results for the annihilation reaction reported
in [1] seemed to be in agreement with this ansatz.

In [6] the temperature-programmed reactionA + A → productswith such anomalous
diffusion was studied by simulations. In [7] the two-species reactionA + B → products
with reacting particles with non-diffusional motion at short times was approached by means
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of a generalized diffusion equation. On the other hand, the anomalous relaxation pattern
which occurs for the fractal-time random-walk model was study in [8].

In this work we offer a complete solution for both models:A+A→ (2−ε)A coagulation
(ε ≡ 1) and annihilation (ε ≡ 2), under such a dispersive transport. Following the ideas in
[1], we will model the motion of the particles as a CTRW on lattices of integer dimension
d (for which is ds = d).

This paper is organized as follows. In the next section we briefly explain the stochastic
motion of the particles and obtain the function of main interest in our solution: the
probability density for the first-meeting time of two particles under fractal-time. In section 3
we obtain a solution for these reactions on the one-dimensional lattice in explicit terms
of the initial particle distribution. In section 4 we solve the reaction problem for lattice
dimensionalityd > 2. In section 5 we consider the additional effect of fractal segregation
of the particles in the space.

2. The first-meeting rate of a pair of particles

Let ρ(r) be the single-step-transition probability distribution of the random walker (a
typical particle). LetPs(r) be the probability that the random walker be at siter after
s steps, starting fromr = 0. Then we havePs(r) =

∑
r′ ρ(r − r′)Ps−1(r

′). In the Fourier
representationPs(k) ≡

∑
r eik·r = ρ(k)Ps−1(k) = ρ(k)s . We will consider that particles

perform nearest-neighbour transitions onsc-lattices of unit spacing (this fixes the length
scale). Then the structure function of the random walk is

ρ(k) = [cos(k1)+ · · · + cos(kd)]/d. (7)

First we require the probabilityFs(r) that asinglerandom walker, starting atr = 0, reaches
site r for the first time in thesth step. As shown by Montroll and Weiss [3, 9], for any
lattice with translational invariance its generating functionF(r, z) ≡∑∞s=0 z

sFs(r) can be
obtained as [10, 11]

F(r, z) ≡
∞∑
s=0

zsFs(r) = Gd(r, z)

Gd(0, z)
for r 6= 0 (8)

where Gd(r, z) ≡
∑∞

s=0 z
sPs(r) is the generating function ofPs(r). In its Fourier

representation this is given by∑
r

eik·rGd(r, z) = 1

1− zρ(k). (9)

By means of an inverse Fourier transform one obtains

Gd(r, z) = 1

(2π)d

∫ π

−π
ddk

e−ik·r

1− zρ(k). (10)

• For d = 1 this is

G1(r, z) = 1

π

∫ π

0
dk

cos(rk)

1− z cos(k)
=
∫ ∞

0
dx e−xIr (xz) = 1√

1− z2

(
z

1+√1− z2

)r
(11)

with r = |r|, and then (8) is

F(r, z) =
(

z

1+√1− z2

)r
. (12)
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For higher dimensions there are no simple expressions forGd(r, z). This function can only
be obtained from recurrence relations based onGd(0, z). This last function is
• For d = 2 [11–13],

G2(0, z) = 1

π2

∫ π

0
dk1

∫ π

0
dk2

1

1− z
2[cos(k1)+ cos(k2)]

= 2

π
K(z) (13)

whereK( ) is the complete elliptic integral of the first kind.
• For d > 3 [14],

Gd(0, z) = 1

πd

∫ π

0
dk1 . . .

∫ π

0
dkd

1

1− z
d

[cos(k1)+ · · · + cos(kd)]
(14)

=
∫ ∞

0
dx e−x [I0(xz/d)]

d =
∞∑
n=0

1

n!d2n

(
1

2

)
n

H (d)
n z2n (15)

where

H(d)
n =

n∑
m1=0

m1∑
m2=0

. . .

md−2∑
md−1=0

(
n

m1

)2

. . .

(
md−3

md−2

)2(
md−2

md−1

)2

.

The study of the long-time asymptotics of our results will require the expansion of (14) for
z → 1. This was derived by Joyce [15], Montroll and Weiss [9] and improved by Blumen
and Zumofen [16].

We now turn back to the continuous time picture. Here the time elapsed between steps
has a distribution given by the WTDψ(t). Correspondingly, the probability densityF(r, t)
for the timet in which asinglerandom walker, which started at the origin, reaches the siter
for the first time, follows as the sum over all possible step-numbers of thes-fold convolution
of ψ(t) timesFs(r). This can be summed more easily in the Laplace representation:

F(r, u) ≡
∫ ∞

0
dt e−utF (r, t) =

∞∑
s=0

ψ(u)sFs(r) = F(r, z = ψ(u)). (16)

Now, letF (rel)(r, t) be the probability density of the first-meeting time of two particles,
initially a distancer apart. This can be viewed as the functionF(r, t) corresponding to a
new random walker whose motion mimics the relative motion of these two particles, i.e. with
the same structure function and with twice the hopping rate. Strictly speaking, this is exact
only for the case in which each particle follows a Poisson renewal process for its stepping
times, characterized by an exponential WTD, equation (3), i.e. for the case of pure diffusive
motion 〈r2(t)〉 = λt , with λ = 2dDt . This is so because the relative motion follows a point
process in the time obtained as thepooling (superposition) of two renewal processes. The
difficulty is that this pooling process is a renewal process in turn only if the component
processes are Poisson [17–20]. Only in this case, can the relative motion be handled exactly
as the CTRW of a single walker with the WTDψ(rel)(t) = 2λ exp(−2λt), in terms of which
F (rel)(r, t) is obtained in the Laplace representation asF (rel)(r, u) = F(r, z = ψ(rel)(u)).
However, a detailed study [21–23] reveals that in the general case, for long times (i.e. small
u) this pooling process is very well approximated as a renewal process with a WTDψ(rel)(t)

given byψ(rel)(t) ∼= 2ψ(2t), that is,

ψ(rel)(u) ∼= ψ(u/2) asu→ 0. (17)

Equation (17) is of course exact for the exponential WTD. Then, in this long-time
approximation, from (16) we have

F (rel)(r, u) = F(r, z = ψ(rel)(u)) ∼= F(r, z = ψ(u/2)). (18)
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3. Solution for one-dimensional reactions

The exact solution methods known ford = 1 assume that particles cannot pass over each
other without reaction and that they perform a pure diffusive motion. Under these conditions
Spouge [24] showed that the general solution is given as a suitable average of the survival
probability of two particles

A(t)/A(0) = 〈U(rel)(t)〉. (19)

HereU(rel)(t) is the survival probability of a pair of particles, initially a distancer apart,
averaged over the distributionβ(r) defined as

β(r) =


p1(r) for coagulation

2
∞∑
n=1

(−1)n+1pn(r) for annihilation.
(20)

Here pn(r) is the probability distribution of the distance of a typical particle to itsnth
neighbour att = 0 (the initial distribution is assumed to be translationally invariant). In
particular,p1(r) is the inter-particle distribution function (IPDF) [25], whose first moment
equals the inverse initial mean concentration on the line

∞∑
r=1

rp1(r) = 1/A(0). (21)

Moreover, as only one particle per site can be present, we definep1(r = 0) = 0. We will
rewrite the result (19), (20) as a closed expression in explicit terms of the initial distribution.
Assuming an initial distribution generated as a renewal process on the lattice, we have

pn(r) =
r∑

r ′=0

p1(r − r ′)pn−1(r
′). (22)

With a ζ -transformation [26] of this renewal equation we obtain

pn(ζ ) ≡
∞∑
r=0

ζ r pn(r) = [p1(ζ )]
n. (23)

With a similarζ -transform forβ(r) we obtain

β(ζ ) ≡
∞∑
r=0

ζ rβ(r) =
{
p1(ζ ) for coagulation

2p1(ζ )/[1+ p1(ζ )] for annihilation.
(24)

In terms ofF (rel)(r, t), equation (19) is

A(t)

A(0)
= 1−

∫ t

0
dt ′ 〈F (rel)(t)〉

= 1−
∫ t

0
dt ′
∑
r

β(r)F (rel)(r, t)

= L−1

{
1

u
[1− 〈F (rel)(u)〉]

}
(25)

with L−1 the inverse Laplace operator (transforming fromu → t), and 〈F (rel)(u)〉 =∑
r β(r)F

(rel)(r, u). Using (12), (18) we obtainF (rel)(r, u) = ξ(u)r with

ξ(u) = ψ(u/2)

1+
√

1− ψ(u/2)2
. (26)
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Therefore〈F (rel)(u)〉 = β(ζ = ξ(u)) and our final expression for the one-dimensional
solution is

A(t)

A(0)
=


L−1

{
1

u
[1− p1(ζ = ξ(u))]

}
for A+ A→ A

L−1

{
1

u

1− p1(ζ = ξ(u))
1+ p1(ζ = ξ(u))

}
for A+ A→ 0

(27)

in terms of theζ -transform of the initial IPDF,p1(r, t = 0). In the pure diffusive case
exponential WTD (3) isψ(u) = λ/(λ+ u), therefore (26) is

ξ(u) =
(

1+ u

2λ

)
+
√(

1+ u

2λ

)2
− 1

and the solutions (27) are exact, with the known long-time decay

A(t) ∼= 1

ε
(πλt)−1/2. (28)

On the other hand, for the fractal-time case (1) is

ψ(u) ∼ 1− αuγ with α = c0(1− γ )
γ

. (29)

Now the smallu-expansion of (26) isξ(u) = 1− √2αuγ/2 + · · ·, which, from Tauberian
theorems [27], leads to the result

A(t) ∼ 1

ε

√
2c0(1− γ )/γ
0(1− γ /2) (2t)−γ /2+ · · · . (30)

In figure 1(a) we show simulation results for coagulation on the one-dimensional lattice
under subdiffusive transport, modelled by the following long-time tailed WTD

ψ(t) = γ (1+ t)−1−γ (31)

for which c = γ . The lower broken curve shows, as a comparison, the simulation with a
pure diffusive motion, using (3) withλ = 1. The straight line shows the known asymptotics
(28). The upper broken curve corresponds to the simulation in fractal-time, using WTD
(31), with γ = 0.8. The heavy full curve is our analytical result (27). The full line
displays its asymptotes (equation (30)). Note that apparently the theoretical asymptotes
are shifted with respect to the curves corresponding to the simulations. However, this is
only a transient effect, while the pure asymptotes (30) establish at times which cannot be
reached by simulations. In order to display this fact, let us define the relative difference
1(t) = [Asimul(t)− A(t)]/A(t), whereA(t) is our analytical result (27). In figure 1(b) we
show that in fact this difference tends to vanish as slow as1(t) ∼ t−0.02.

4. Solution for higher dimensions

In this section we will consider these reactions under anomalous diffusion ind > 2. The
method used in the previous section cannot be extended to higher dimensions, so we will
introduce an approximated method of solution which yields closed expressions for the
particle number evolution in satisfactory agreement with simulations. These solutions are
exact for very short and long times. With this aim, we defineP(N, t) to be the probability
of havingN particles at timet . Here we are assuming a finite lattice withLd sites andN(0)
randomly distributed particles at the beginning of the reaction, i.e. with an initial particle
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Figure 1. (a) Simulation (broken curves) of the coagulation on the one-dimensional lattice.
Log10A(t)/A(0) versus log10(t) is shown. The lattice size isL = 200 000 and initially there
is one particle per site, i.e.A(0) = 1, averaged over five realizations. See explanation in the
main text. (b) The approach of the predicted asymptotics in the fractal-time simulation shown in
(a): the vertical axis is the logarithm of the relative difference between simulation and theory:
log101(t); the horizontal axis as in (a). The full line has slope−0.02.

concentrationA(0) = N(0)/Ld . Later, the limit of an infinite lattice will be considered.
We write the following evolution equation for this probability

∂tP (N, t) = ω(N + ε, t)P (N + ε, t)− ω(N, t)P (N, t). (32)

Hereω(N, t)dt is the probability that a reaction occurs in [t, t + dt ] given that there are
N particles at this time. Because at each particle meeting the reaction takes place with
probability one, the frequencyω(N, t) can be split in terms of an overall meeting rate,
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F(t), and a probability3(N, t)

ω(N, t) = F(t)3(N, t). (33)

The meaning is as follows. First we consider that particles move independently of each
other, without interaction or reactions. For this caseF(t) is the rate of first encounters of
pairs of particles. On the other hand,3(N, t) is the probability that two particles, which
meet for the first time at timet , have not reacted in the actual problem with reaction. In
a decoupled approximated scheme, the transition frequencyω(N, t) follows as the product
of these functions. WhereasF(t) can be computed exactly taking advantage of CTRW
techniques (which will be given later),3(N, t) cannot be obtained exactly. However, as
we will seea posteriori, a mean-field-like approximation of the form

3(N, t) ∼=
[
N(t)

N(0)

]2

(34)

yields a good approximation for the entire course of the reaction. Indeed, this approximation
becomes exact ast → 0 or t → ∞ and, in general, it improves for increasing lattice
dimensiond.

Let κ(t) be the time-dependent reaction rate per particle

κ(t) ≡ εF(t)/N(0). (35)

If each site is initially occupied independently and with probabilityA(0), from the definition
of F(t) and taking the limit of an infinite lattice, we have

κ(t) = ε

2
A(0)

∑
r 6=0

F (rel)(r, t). (36)

Here the sum runs over all the lattice sites, except the origin. In terms of the relative
mean number of particles in the limit of largeL, n(t) ≡ 〈N(t)〉/〈N(0)〉 = A(t)/A(0), from
equations (32), (33) is

∂tn(t) = −κ(t)n(t)2 (37)

that is

n(t) = 1

1+ ∫ t0 dt ′ κ(t ′)
. (38)

Noting that
∑
rGd(r, z) = Gd(k = 0, z) = 1/(1− z) (see equation (10)), and using the

approximation (18) (let us remember that this is exact for an exponential WTD) the solution
(37) reads

n(t) ∼=
[

1− ε
2
A(0)+ ε

2
A(0)L−1

{
1

u[1− ψ(u/2)]Gd(0, z = ψ(u/2)
}]−1

. (39)

From Tauberian theorems [27], and particularizing forsc-lattices of unit lattice-spacing, we
obtain:
• for d = 2:

n(t) ∼ 4c

εA(0)

(2t)−γ

sin(γ π)
K

(
(2t)γ

α + (2t)γ
)
∼ 2c

εA(0)

(2t)−γ

sin(γ π)
ln

[
8γ

c0(1− γ )(2t)
γ

]
(40)

• for d > 3:

n(t) ∼
[

1− εA(0)
2
+ εA(0)

2

(2t)γ /α

0(1+ γ )Gd(0, 1)

]−1

∼ 4c

εA(0)

Gd(0, 1)

sin(γ π)
(2t)−γ . (41)
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Figure 2. Plot of log10A(t)/A(0) versus log10(t) for
the coagulation reaction on the square lattice, of 2002

sites, under subdiffusion modelled by means of the same
WTD as in figure 1, withγ = 0.8 (upper curves,
50 realizations). InitiallyA(0) = 1, with N(0) =
40 000. The bottom curves show, as a comparison,
the pure diffusive case, for whichψ(t) = ψ(Poisson)(t),
equation (3), withλ = 1.

Figure 3. The same as figure 2, for thed = 3 sc-lattice,
with N(0) = 503 = 125 000, three realizations. In
all cases the simulations considered periodic boundary
conditions.

In figures 2 and 3 we show our general result (39) in comparison with Monte Carlo
simulations on the square and three-dimensionalsc-lattice, respectively. For the last
one, the exact value of the integral (14) forz → 1− is known [28]†: G3(0, 1) =√

6
32π30(1/24)0(5/24)0(7/24)0(11/24) = 1.516. . .. As for the one-dimensional case, the
simulations were performed using the WTD (31). In all cases the simulations started with
one particle per site (A(0) = 1) and particles performed transitions to nearest-neighbour
sites. For the coagulation reaction, each time a particle lands on an already occupied site,
one of the two meeting particles, selected at random, was removed.

5. Fractal initial distributions

Next let us consider highly inhomogeneous initial distribution of particles, modelled as
fractal distributions of (Hausdorff) dimensionα (0< α < d). There are some experimental
situations in which this initial distribution of particles is relevant. As is well known, the
diffusion–annihilation reaction is formally related to the Ising model by identifying domain
walls with particles [25, 29]. Here the distribution of domain sizes can be of fractal type for
ferro-magnetic (-electric) configurations. Therefore, it could be of interest in the study of
the relaxation to the equilibrium of some substances like potassium dihydrogen phosphate,
KH2PO4, for which a ferroelectric structure with fractal aspects of the pentad Cantor set of

† This is the exact expression ofG3(0, 1), as obtained in [12, 13] but an unfortunate printing mistake in this
original paper is being reproduced in many other works [3, 10, 11].
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Figure 4. Coagulation reaction (axis as in previous figures) under fractal-time (γ = 0.8) and
fractal initial distribution on the lattice, constructed as a Cantor set of base 5 (α = ln(4)/ ln(5) =
0.861. . .): upper curve. The full line corresponds to our result (42). The middle broken curve
shows a comparison, the same initial distribution but with pure diffusive motion (exponential-
WTD). Here the full line shows the decay∼ t−α/2. The bottom curve gives as a comparison,
an initial distribution of a particle per site, and reaction with pure diffusive motion. Here the
full line shows the known result (28).

Hausdorff dimensionα ∼= 0.756 was recently reported [30, 31].
Another situation of interest is that of particles building up percolation clusters by being

adsorbed on surfaces, after which they perform recombination reactions. Recently, in order
to obtain information about the adsorption energy distribution on a catalytic surface, the
measurement of the particle number decay along the entire course of the reaction was
proposed [32]. It was found that the kinetics of the reactionA + A → 0 is strongly
influenced by energy correlations in the adsorptive field.
• For the one-dimensional case a fractal pattern is readily constructed as a renewal

process along the lattice with an IPDFp1(r) ∼ r−1−α. Such a distribution in our result (27)
yields

A(t)/A(0) ∼ t−γα/2. (42)

In figure 4 we show a test of this result against simulations for an initial distribution
corresponding to a deterministic fractal, namely a Cantor set of base 5 [33], for which
α = ln(4)/ ln(5) = 0.861. . ., and fractal time withγ = 0.8 (see upper curves).

For higher dimensions, considering isotropic initial fractal distributions, we define

℘(r) ∼ rα−1 to be the density of particles at a distancer =
√
r2

1 + · · · + r2
d of a typical

particle when the reaction starts, i.e. now the initial concentrationA(0) ∼ �d
∫ L

0 ℘(r) dr ∼
Lα, depends parametrically on the typical system sizeL. Here�d is the solid angle in
d-dimensions. In terms of this density, in place of equation (36) we have

κ(t) ∼ ε

2
�d

∫ ∞
0

dr ℘ (r)F (rel)(r, t). (43)
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Proceeding as in the previous section, we readily obtain the asymptotics:
• For d = 2:

A(t)/A(0) ∼ t−γα/2 ln(b′tγ ) (44)

where the factorb′ depends on the particular form of the long-tailed WTD and on the
particular fractal structure of the initial particle distribution. We see that the logarithmic
factor, which is typical ford = 2, remains unaffected by the fractal initial distribution.
• For d = 3:

A(t)/A(0) ∼ t−γ+( d−α2 )γ . (45)

The caseα = d − 2 is marginal, for whichA(t) ∼ 1/ ln(b′tγ ), whereas forα < d − 2
the relative particle concentration goes asymptotically to a non-vanishing time-independent
value: A(t)/A(0) → cte, 0 < cte < 1. This surprising decay, namely to an asymptotic
state in which the reaction seems to have died out, was advanced in [34] for the diffusive
case.

6. Conclusions

In this work we have studied the single-species reaction models of bimolecular coagulation
and annihilation controlled by anomaloussubdiffusion. While in [35] the same reactions
under anomaloussuperdiffusion were examined, thesubdiffusive case was still an open
problem; mainly due to the difficulty in dealing with the non-trivial problem of the relative
motion of two subdiffusive particles (while in thesuperdiffusive case this problem is trivial).
Using the method worked out in this paper we have found closed expressions for the particles
number decay along the whole course of the reactions in very satisfactory agreement with
Monte Carlo simulations. The obtained solutions are exact in the short- and long-time
asymptotics. While in the diffusive case the concentration of particles in the coagulation
and annihilation reaction models behaves as

A(t) ≈


t−1/2 for d = 1

ln(t)/t for d = 2

t−1 for d > 3

(46)

for the same reactions under dispersive (orsubdiffusive) transport we have established the
following decay laws:

〈r2(t)〉 ∼ tγ
(0< γ < 1)

}
⇒ A(t) ∼ ε

2


a1t
−γ /2 for d = 1

a2 ln(btγ )t−γ for d = 2

a3t
−γ for d > 3

(47)

with the coefficientsa1, a2, a3, b entering in these expressions obtained exactly in (30),
(40), (41). Moreover, as tested against simulations, the whole course of the reactions is
well described by our general solutions: equation (27) ford = 1 and equation (39) for
d > 2. For the diffusive case (46), above the critical dimensiond = 2 the chemical-kinetic
decayA(t) ∼ t−1 applies

d

dt
A(t) = −εkA(t)2. (48)

On the other hand, equation (47) does not seem to have an equivalent upper critical
dimension. However, in [36] it was shown that the diffusion equation with fractional
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time-derivative of orderγ just corresponds to a fractal-time CTRW withψ(t) ∼ t−1−γ if
0< γ < 1. Therefore, if we generalize the chemical-kinetic equation properly, namely

dγ

dtγ
A(t) = −εkA(t)2 (49)

we get a generalized chemical-kinetics equation with solution∼ t−γ . Then we see that for
thesubdiffusive cased = 2 is still the dimension beyond which the solution of equation (49)
applies. In this generalized sensed = 2 remains the upper critical dimension for coagulation
and annihilation under dispersive transport.

Moreover, we have analysed the combined effect of fractal-time and fractal initial
distributions characterized by the fractal dimension 0< α < d, and we have obtained
the following asymptotics:

〈r2(t)〉 ∼ tγ (0< γ < 1)

A(0) ∼ Lα (0< α < d)

}
⇒ A(t)

A(0)

∼ ε

2


(t−γ )α/2 for d = 1, 0< α < 1

ln(b′tγ ) (t−γ )α/2 for d = 2, 0< α < 2

(t−γ )1−
d−α

2 for d > 3, d − 2< α < d

cte > 0 for d > 3, 0< α < d − 2

(50)

which display a subordinative phenomenon: both fractal effects merge in a multiplicative
way.

Our simulations support these results, as shown from the figures. Note that the
simulation programmes of reactions with fractal-time are much more cumbersome than
for pure diffusion. In this last case, it is not necessary to programme in continuous time,
as at each stage of the reaction the next particle to move can be chosen randomly. In
contrast, in the continuous-time simulations we have to remember the stepping-times of
each surviving particle (each renewal processes has to be generated according to the WTD);
because at a given timet the next particle to move is the one whose next stepping-time
is the closest to the current timet . Both strategies are equivalent only for the exponential
WTD, ψ(Poisson)(t). Technically, this means each time we want to move a particle we have
to find the minimum of theN(t) values, and this makes the simulations considerably slower
than for the diffusive case.

Before closing this article we want to mention an interesting effect in the simulation
of the coagulation reaction. For pure diffusive motion it does not matter which particle is
removed when a meeting (reaction) occurs. This seems to be rather obvious, but in a deeper
consideration one can understand this fact as a consequence of the waiting-time paradox
[21, 37] characteristic of the exponential WTD. In contrast, when introducing another WTD,
the particles are distinguishable according to whether the incoming particle is removed or
survives. In our simulations this decision was taken at random. In the more pathological
case of WTD with the two first moments infinite, as used here for modelling the fractal-time,
the breakdown of the symmetry under coagulated particle is more marked. A detailed study
of this effect lies beyond the scope of this paper, being the matter of a forthcoming article
[38].
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